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1. Introduction

Early investigations on thermo-mechanical interaction resulted in the

classical studies of thermoelasticity. Two major treatises have been published

which summarize the contributions in thermoelasticity up to the time of

early nineteen sixties [1-2]. Most commonly, problems of thermal stress were

formulated such that the temperature field does not depend on the stress

field, whereas the stress field is affected by the thermal expansion or

contraction of the material. However, the fully coupled system of equations

of thermoelasticity containing coupling terms in both the equation of motion

and the energy balance equation has received relatively little effort until

more recently. This development is largely due to the fact thit these equations

by and large are not easily accessible by the available analytical techniques.

Some successes were achieved in isolated cases [3-5]. In these cases several

methods of analysis including Laplace transform or perturbation series have

been employed. For the fully coupled equations with arbitrary coupling

coefficient and with general type of boundary conditions one must resort

to numerical techniques. Numerical approach to the solution of the fully

coupled thermoelasticity equation has appeared'in the literature [6]. More

recently, finite element method has been applied in solving the boundary value

problem in a slab [7]. Results of the analysis of the slab indicate that

under high rate of loading the coupling term in the energy balance equation

should not be ignored.

This paper presents the numerical method and some results obtained in

solving the coupled dynamical thermoelasticity equations in a long hollow

cylinder, subjected to the pressure and the heat flux boundary conditions

at the inner surface and ambient environment at the outer surface by a finite

-, . . .• - - , . , _, . '.;: i- >; i . : , -; . " j , , .- .. . . . ..
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element met-hod. Several numerical schemes are studied for comparison purpose. J

Besides exhibiting the physics of the problem, this paper also is intended

to show how various numerical schemes are suited for these problems.

2. Mathematical Model

The classical coupled dynamical thermoelasticity equations are a pair

•. partial differential equations governing the balance of the linear momentum

and the energy as given by the following [2].

U)2 graddiv u + F.-- y grad T U (1)

' and

ad V2 T-T n divu- (2)

where u is the displacement vector and T is the temperature, X and j. are
1,

Lame's constants, p is the density, k is the diffusivity, Q is the heat source,

y and n are defined as:

y - (3A + 2P)a*
(3)

-a yTo/ock

where a* is the coefficient of thermal expansion, c is the heat capacity, T0

is the ambient temperature.

For a cylinder, the pair of equations (1) and (2) reduces to

1 a au u U T-+ + +=- + 1- "  (4)

and

3'.i T - .' , -_ . . . . .. . .. (r ) . 0 (5)
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Notice that due to polar symmetry the displacement vector u is reduced to the

,. radial displacement u, whereas the tangential component is identically zero.

Also, it is assumed that P E 0 , Q-0.

In Eqs. (4) and (5), we have

m - y/(2v. + X) and c,2.' (A + 2u)/P (6)

The initial conditions on u and T are: u(r,0)-O, T r,O)-0.

The boundary conditions are:

at the inner boundary, r - r.

(1 + 2U) a + - y(T - TO) - f*(t) - 0

and (7)

aT

aT E T - g*(t)1 -0

at the outer boundary, r = r
j0 o .'

au u
(A + 2) + - y(T- To) -0

and (8)
.4 aT

LT- + S*T - 0
3r 2

where 01 - hl/KC and 82* - h2/K , hl and h2 are the heat transfer coefficients

at the inner and outer boundaries respectively. K is the thermal conductivity.

it is noted that the data on the forcing functions f* and g* are

compatible in that both these functions are continuous at the initial time.

4'
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Introducing the following set of non-dimensional variables

- T-To - r - _.To , -i  and ur9

and after some algebra, Eqs. (4) and (S) are transformed into the following

non-dimensional equations with bars removed.

T. r. nr *- (10)

and

a 3T -- a *

-j~(rj~ 3rT ~i. (ru) -0(1

where c - cjr i/k , X, - kn/To  and X2 - mTo

The initial conditions are: u(r,0)-0, T(r,0)-0 and the boundary conditions are:

at the inner boundary, r - 1
au u .a- - 2 - f(r) * 0
ar r

(12)
aT

- 81T + B1g(T) - 0

at the outer boundary, r rp 0n2O

(13)
aT +r 2T - 0

where i 01*ri  , 2 "2*ri , a - X/(2u + X)

g(r) - [g*(t) - To]/T o  and f(r) - f*(t)/(X + 21L).

.tT,.- #*- . . ..- .2 ..- , .,.-. -.,.. .. . . .... . ..- -. .. . ....
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3. SPACE DISCRETIZATION

Two approaches are used in the space discretization 
- Galerkin method which

uses linear shape function and generates consistent mass and conductivity

matrices, and central explicit method which uses quadratic shape functions and

generates lumped mass and conductivity matrices.

3.1 Galerkin Method. In this method it is assumed that both of the

approximate solutions of Eqs. (10) and (11), 0 and T respectively, can be

expanded in terms of the same shape function i (r) (Figure 1).

n

i-0
(14)

n
- ZO (r)Ti (T)

* i-0

where n is the number of nodes, including the two boundary nodes. ui and T

are the approximate nodal values of the displacement and the temperature

respectively.

Substituting Eq. (14) into Eqs. (10), (11), and (12) and (13) and imposing

the condition

fo Rk W~~dr - 0 J -0,1,2,- n

f j (15)
ri , k -1,2

where R1 and R2 are the residues calculated upon substitution as stated, and

performing integration and some algebraic work lead to the following pair of

linear algebraic equations:

j*,, , . -. o . . ... 
.

.



EMU2]g + [KU2]u + X2 [KT2]T - (16)

and

[l 1 + ()1Z+ CU1 (17)

where [MU2], [KU2],---, etc. are tridiagonal N x N matrices. The details

of deriving the solution given in Eqs. (15), (16) and (17) can be found in

Appendix A.

3.2 Central Explicit Method. in this case the shape functions .(r)

are quadratic instead of linear. The weighting function is taken to be

6(r-r We let u and T be the following quadratic expansion within each

element.

i+l
- E t.(r) ui(T)

i-i

(18)
* i+l

- ~E~i(r) Ti(T)
i-1

where the *Is are the Lagrange polynomials.

Figure 2 illustrates the *-function.

Using the same notation as before, we impose the condition

i+l

Ai-R d(r-r )dr - 0 , i - 0,1,2,---n (19)

-1 j - 1,2

The respective coefficient matrices of Eqs. (16) and (17) for this procedure

are given in Appendix B.

,. ., ... .. -... ... ... . ... ... . . . .o , . . . .. . . . .



4. TIME MARCHING

Two approaches have been tried: the general implicit scheme (8] and the

three-point recurrence scheme (9].

4.1 General Implicit Method (GIM). For convenience we shall write Eqs.

(16) and (17) in a single equation

14k 6 +(20)

where X - {uT}T

XKT

0 KT10 0
F. {(2) (1.

Equation (20) can be written as a first order differential equation in the form

Ai By + r (21)



T
where

(2) (1)..T

~MU2 0 0

A 0 1 0

0 0 - -CTlJ

0 I-U -X IT2

,.o o-10

B0 0~~l

Applying GIM to Eq. (21) we obtain the following two-point recurrence scheme

[AA B]iJl (A+AT(l-8)BiY i +AT. i + l  +(-6) (22)

where e is a parameter, 0 < e . 1.

The selection of the value of 8 depends on the problem on hand, guided by

the stability, accuracy and economy of the computation. The value 8 - 0.667

has been shown to be a good choice [9,101.

4.2 Three-Point Recurrence Method (GME)

Let the shape function NT. (r) be defined such that

N i_(T) -

N (T) (-0(1+0) 23)
i

N (T) -9(1V/2
iel

where -./A'r

'II- - - 7".- ---



Figure 3 illustrates the N. (T) functions.

Let x(.r) = Ni(T)X i- Ni (r)Xi + N1 i+l(T)X i+ (24)

The residue R is defined as

R + X+KX (25)

We require that

i+l

i R Wi(T)dT 0 (26)
4-1

where W (T) is the weighting function. Performing the operation in Eq. (26) yields

2[M + YATC + $AT K]Xi+ + [-2M + (l-2y)ATC

1 2K] + '2. + 2-Y) 2+ - 20 + Y)A I +M -(l-y)ATC + -2

2-FAT =0 (27)

where 8 and y are two parameters depending on the weighting function chosen.

_ 1

and

f W-- 1 " ---- ,
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ect of various combinations of 5 and y for the solution of problems

,.mics has been studied [11].

AND DISCUSSION

here are two schemes each for the space and the time discretization,

the time discretization schemes there are several choices of values of

ars e , and y, many combinations of the space and time discretizations

B for the numerical solution of the physical problem.

oblems were selected with a view to compare the results of computation

g the relative merit of each sch. me regarding the stability and

sponses to a Modified Step Stress Input (Wave Equation Only).

a first series of computation was done to test the wave propagation

When the temperature T was removed by putting Xi = X 0 and

boundary condition deleted, the remaining system of equations

a wave equation, for which analytical solution exists.

te computation a modified step stress is given as

fiT) - -0.1(1 - •- 1 0T )

owing computation the same time and spatial increments are used for all.

ersus T Responses 4-

- Figure 4 shows the result of computation using Galerkin (GK) in

IM in time discretization. Three different values of 6 were used:

ntral difference), 9 - 0.667 (Gelerkin) and 9 1 (backward). The
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figure shows the radial and tangential stresses versus time at the midpoint

(r - 1.45). The results indicate that in the zase of e - 0.667, least amount

of spurious oscillation exists, whereas the other two schemes of GIM lead to

either spurious oscillation or excessive damping as evidenced by the drastic

reduction in amplitude.

GK/GFE - Figure 5 is the same set of responses calculated by GK/GFE with

four different sets of values for and y. They are (1) 8 = 0.25, y - .5 ]
(2) 8 - 1/6, y - .5, (3) 8 = .5, y = .6, (4) 8 - .8, y - 1.5. Results show I'

that the third set of S and y give neither spurious oscillation nor excessive

damping.

CD/GIM or GFE - Figure 6 shows the computation based on a central explicit (CD)

scheme in space and three different schemes in time (1) GIM, 8 - 0.667

(2) GFE, 8 = .5, y- .6 and (3) GFE, 8 = .8, y - 1.0.

Curve (1) shows comparatively little dissipation in the amplitude responses,

whereas curve (2) and (3) exhibit significant dissipation.

In summary, it is demonstrated that several schemes give comparable

results in the wave propagation responses which are accurate and stable,

as can be verified at least qualitatively by a method such as characteristics.

In the following, the fully coupled fields in the cylinder are analyzed

subject to either stress or thermal inputs at the inner bore. In the

stress input we use both pulse or step type input, whereas only pulse type

input is used for the temperature.

In this paper it is not the intention to give details regarding the

physical problem involved. The parameters used in the calculation

derive their origin from the application problem. For reference purposes,

a list of the values of the parameters used in tihe computation is given.

I.,
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The amplitudes of the pulses and the step are realistic values corresponding

to the physical situation in the application.

-0Olt2T5.2 Responses to a single stress oulse, f(T) -0015Te for different

r o/ri - AT/Ay- and e - values (fully coupled equations).

The next series of three figures show the radial stress versus time

responses of the cylinder with fully coupled equations subject to a single stress

pulse. Figure 7 shows for a cylinder with ro/r i - 2.0. Curve (1), (3) and (4)

correspond to GIM with different values of e. From these curves it appears

that when 8 - 0.667 as shown in curve (1) the result is the bejt. Curve (3)

with e - 0.5 shows too much oscillation, and curve (4) with e - 1.0 shows

significant "numerical dissipation".

Curve (1) and (2) have the same 8-value but different AT/AT. Curve (1)

with AT/Ay - 0.2 gives better result in that it has less "numerical dissipation".

Figure 8 is a similar computation but with U o/i 1.5, e - 0.667, but

different AT/Ay. Curve (3) uses a very small AT(- 0.002), thus requires too

much computation time. Curve (2) exhibits significant "numerical dissipation".

Curve (1) with AT/Ay - 0.2 is the best compromise.

Figure 9 is calculation for a very thin cylinder with 70/7i - 1.1. The

schemes use 6 - 0.667 and AT/Ay - 0.2 and 2.0 respectively. For AT/Ay - 0.2

the result shows less dissipation, whereas for AT/AY - 2.0 the result shows

significant "numerical dissipation".

Therefore, from the above results we chose 8 - 0.667, AT/AY - 0.2 for

computing responses to stress inputs.

0..
q5

~ -- - - - - - - -- -
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5.3 Responses to a Modified Step Stress, f(r)= -.003(l-e -10r)

Figure 10 shows the responses in the radial stress, tangential stress

and temperature versus time. For the given input the rise time is 0.8, i.e.

when T-0.8, f(r)- -.003. The plot is for the midpoint between the fifth and the

sixth nodes with the non-dimensional r=1.45. Since the non-dimensional time

T is scaled against the travel time of the elastic wave through a distance equal

to the inner radius and the non-dimensional distance is scaled against the length

equal to the inner radius, it would take a unity of time for the radial wave to

travel a unit distance in non-dimensional scales. Thus, the time of arrival
.9..

of the radial wave should be about T - 0.45. This is indeed the case as shown

in Fig. 10. Notice that the radial wave does not rise to the maximum value

of the input as it would be the case in a slab [71, due to the effect of the

curvature. Observed is also the fact that the reflected wave, being tensile

in nature due to the free surface at the outer boundary, gives rise to intervals

of time when the radial stress drops off and becomes tensile stress for a short

time. A periodicity of T-2 is observed from the figure with good regularity

within the time plot. The travel time of the tangential wave should be about

(2ir)(1.45)/1 or 9.11. The calculation gives a good approximate check.

The temperature response in the cylinder is due to the coupling in both

field equations. Predictably, the temperature generated is small, about

0.6*C ' -1.4*C referred to ambient when the ambient temperature is 27*C. It

can be either positive or negative corresponding to a rise on a drop from the ambient

temperature due to a volumetric compression or expansion. This effect usually

is very small. Here, due to the high rate of change of strain, the coupling

effect is not ignorable.
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5. 4 Responses to a Single Triangular Stress Pulse

A triangular pressure pulse of duration equal to 2 and amplitude equal to

0.003 is applied at the inner boundary. Figure 11 shows the responses vs

time and Figure 12 the distribution of responses.

For large time T a standing-wave like motion is observed in Figure 12

as each point goes through a periodic motion of different amplitude, whereas

the two boundaries in this case are both traction free after T-2.

After T-2, the maximum non-dimensional radial stress occurring at

T-2.4 is tensile in nature and equals to 0.00194. The corresponding

minimum is a compressive stress .00164 at T-7.4. The induced temperature

varies from 1.20C at T-7.4 to -1.30C at T-2.4, referred to the ambient

temperature. The variation is about ±5% of the ambient temperature. These

responses are not graphed in the figures shown.

5.5 Response to a Temperature Pulse, g(T) - 0.008155Te O0005T

The time scale for the temperature response is about four decades longer

than the stress response. The responses are evaluated at times when T % 104.

In the numerical computation a time increment was chosen with the same factor

in mind.

Figures 13 and 14 show the radial and tangential stress distribution

for various times. Notice that when T is 104 the physical time t is 0.173 sec.

From T - 0.2 to T - 0.5 the actual time elapsed is 0.0519 sec., a relatively

F• 'short time for heat transfer.

The maximum temperature is 0.124 (144.24C) at the inner surface when

4T - 1.2 x 104. It drops down quickly as shown in Figure 15.

* . : . * *. . . . . . ... * .-
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In summary, several observations can be made from the results of the

numerical experiments of this investigation.

(1) It is possible through deliberate experimentation to arrive at a

feasible numerical scheme to limit the amount of numerical dispersion

and dissipation to a reasonable level.

(2) The coupling introduced in the energy equation could cause temperature

fluctuation due to a rapidly applied stress input in the order of 5

to 10% for a single pulse input, depending on the rate of application.

(3) The effect of the curvature is to decrease the peak response of the

radial stress, in the presence of the tangential stres's component.
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